30 research outputs found

    Structural transitions in the transcription elongation complexes of bacterial RNA polymerase during σ-dependent pausing

    Get PDF
    A transcription initiation factor, the σ70 subunit of Escherichia coli RNA polymerase (RNAP) induces transcription pausing through the binding to a promoter-like pause-inducing sequence in the DNA template during transcription elongation. Here, we investigated the mechanism of σ-dependent pausing using reconstituted transcription elongation complexes which allowed highly efficient and precisely controlled pause formation. We demonstrated that, following engagement of the σ subunit to the pause site, RNAP continues RNA synthesis leading to formation of stressed elongation complexes, in which the nascent RNA remains resistant to Gre-induced cleavage while the transcription bubble and RNAP footprint on the DNA template extend in downstream direction, likely accompanied by DNA scrunching. The stressed complexes can then either break σ-mediated contacts and continue elongation or isomerize to a backtracked conformation. Suppressing of the RNAP backtracking decreases pausing and increases productive elongation. On the contrary, core RNAP mutations that impair RNAP interactions with the downstream part of the DNA template stimulate pausing, presumably by destabilizing the stressed complexes. We propose that interplay between DNA scrunching and RNAP backtracking may have an essential role in transcription pausing and its regulation in various systems

    Pausing controls branching between productive and non-productive pathways during initial transcription in bacteria

    Get PDF
    Transcription in bacteria is controlled by multiple molecular mechanisms that precisely regulate gene expression. It has been recently shown that initial RNA synthesis by the bacterial RNA polymerase (RNAP) is interrupted by pauses; however, the pausing determinants and the relationship of pausing with productive and abortive RNA synthesis remain poorly understood. Using single-molecule FRET and biochemical analysis, here we show that the pause encountered by RNAP after the synthesis of a 6-nt RNA (ITC6) renders the promoter escape strongly dependent on the NTP concentration. Mechanistically, the paused ITC6 acts as a checkpoint that directs RNAP to one of three competing pathways: productive transcription, abortive RNA release, or a new unscrunching/scrunching pathway. The cyclic unscrunching/scrunching of the promoter generates a long-lived, RNA-bound paused state; the abortive RNA release and DNA unscrunching are thus not as tightly linked as previously thought. Finally, our new model couples the pausing with the abortive and productive outcomes of initial transcription

    Myxopyronin: a punch in the jaws of bacterial RNA polymerase.

    No full text
    International audienceEvaluation of: Belogurov GA, Vassylyeva MN, Sevostyanova A et al.: Transcription inactivation through local refolding of the RNA polymerase structure. Nature 457, 332-335 (2008) and, Mukhopadhyay J, Das K, Ismail S et al.: The RNA polymerase 'switch region' is a target for inhibitors. Cell 135, 295-307 (2008). Bacterial RNA polymerase is an essential enzyme, which is responsible for synthesizing RNA from a DNA template and is targeted by a number of antibiotics. The mechanism of action of two closely related transcription inhibitors, myxopyronin B and a synthetic analog desmethyl-myxopyronin was elucidated, together with the structures of the antibiotic-RNA polymerase complexes. The studies reveal a new binding site and a new mechanism of action affecting the jaw domain of the enzyme. As the need for new antibiotics increase, these studies open new ways to the synthesis of more potent myxopyronin analogs

    Conformational changes in E.coli

    No full text

    HoxB domain induction silences DNA replication origins in the locus and specifies a single origin at its boundary

    No full text
    In multicellular organisms, changes in the DNA replication programme could act to integrate differentiation with cell division in various developmental and transcriptional contexts. Here, we have addressed the use of DNA replication origins during differentiation in the HoxB domain—a cluster of nine genes developmentally regulated in a collinear manner. In undifferentiated mouse P19 cells, we detected several DNA replication origins in the 100 kb HoxB locus, indicating a relaxed origin use when the locus is transcriptionally silent. By contrast, in retinoic-acid-induced differentiated cells, when HoxB transcription is activated, a general silencing of DNA replication origins occurs in the locus except one located downstream of Hoxb1, at the 3′ boundary of the HoxB domain. Silencing of the replication origins is associated with histone hyperacetylation, whereas the active Hoxb1 origin persists as a hypoacetylated island. These findings provide direct evidence for the differentiated use of origins in HoxB genes, and we suggest that this regulation might contribute to the regulated expression of HoxB genes during development

    In Xenopus Egg Extracts, DNA Replication Initiates Preferentially at or near Asymmetric AT Sequences▿ †

    No full text
    Previous observations led to the conclusion that in Xenopus eggs and during early development, DNA replication initiates at regular intervals but with no apparent sequence specificity. Conversely, here, we present evidence for site-specific DNA replication origins in Xenopus egg extracts. Using λ DNA, we show that DNA replication origins are activated in clusters in regions that contain closely spaced adenine or thymine asymmetric tracks used as preferential initiation sites. In agreement with these data, AT-rich asymmetric sequences added as competitors preferentially recruit origin recognition complexes and inhibit sperm chromatin replication by increasing interorigin spacing. We also show that the assembly of a transcription complex favors origin activity at the corresponding site without necessarily eliminating the other origins. Thus, although Xenopus eggs have the ability to replicate any kind of DNA, AT-rich domains or transcription factors favor the selection of DNA replication origins without increasing the overall efficiency of DNA synthesis. These results suggest that asymmetric AT-rich regions might be default elements that favor the selection of a DNA replication origin in a transcriptionally silent complex, whereas other epigenetic elements linked to the organization of domains for transcription may have further evolved over this basal layer of regulation
    corecore